Semismooth Matrix-Valued Functions

نویسندگان

  • Defeng Sun
  • Jie Sun
چکیده

Matrix-valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, -derivative, directional derivative, and semismoothness. The second part shows that the matrix absolute-value function, the matrix semidefinite-projection function, and the matrix projective residual function are strongly semismooth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On differentiability of symmetric matrix valued functions

With every real valued function, of a real argument, can be associated a matrix function mapping a linear space of symmetric matrices into itself. In this paper we study directional differentiability properties of such matrix functions associated with directionally differentiable real valued functions. In particular, we show that matrix valued functions inherit semismooth properties of the corr...

متن کامل

Semismooth Matrix Valued Functions1

Matrix valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, B-derivative, directional derivative, and se...

متن کامل

Nonsmooth Matrix Valued Functions Defined by Singular Values

A class of matrix valued functions defined by singular values of nonsymmetric matrices are shown to have many properties analogous to matrix valued functions defined by eigenvalues of symmetric matrices. In particular, the (smoothed) matrix valued Fischer-Burmeister function is proved to be strongly semismooth everywhere. This result is also used to show the strong semismoothness of the (smooth...

متن کامل

Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems

For any function f from R to R, one can define a corresponding function on the space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the spectral decomposition. We show that this matrix-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous differentiab...

متن کامل

Inverse and implicit function theorems for H-differentiable and semismooth functions

In this article, we present inverse and implicit function theorems forH -differentiable functions and semismooth functions, thereby generalizing the classical inverse and implicit function theorems to certain classes of nonsmooth functions. The classical inverse function theorem [47] asserts that a continuously differentiable function f : R → R is locally invertible at a point with a continuous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2002